
Input/output pins on the Arduino
ENGR 40M lecture notes — July 14, 2017

Chuan-Zheng Lee, Stanford University

Note: An extended version of this handout is in the spring 2017 notes on the class website.

An input/output pin, or I/O pin, is the interface between a microcontroller and another circuit. In the
Arduino, you configure whether a pin is an input or output using the pinMode() function.

Output pins

An output pin provides VDD or 0 V, by making a connection to VDD or ground via a transistor. You set its
state to HIGH (for VDD) or LOW (for 0 V) using the digitalWrite() function. A (simplified) schematic of an
output pin is shown below. You might notice that it looks a bit like a CMOS inverter (or rather, two).

A
rd

u
in
o

VDD

pin
Vout(state set by software)

The transistors in the output pin have non-negligible on resistance, so aren’t suitable for driving large loads.
When talking about this resistance in relation to an output pin, we call it the output resistance of the pin—in
other words, the resistance “seen” by a device connected to the pin. Since this resistance might depend on
the state of the pin (HIGH or LOW), it actually has two output resistances. You’ll measure both in prelab 2b.

Input pins

An input pin reads the voltage on the pin as if it were a voltmeter, and returns either HIGH (1) in software if
the voltage is close to VDD, or LOW (0) if it is close to 0 V. An input pin can be read using the digitalRead()
function.

The value returned by digitalRead() is unpredictable (i.e., could be either HIGH or LOW) when the input
voltage is not close to either VDD or 0 V. The precise meaning of “close” varies between microcontrollers,
but for the Adafruit Metro Mini1 in our circuit, the input pin voltage needs to be at least 0.6VDD to qualify
as HIGH, and at most 0.3VDD to qualify as LOW.

Switches control connections, not voltage, so if we wish to connect a switch to an input pin, we need a
(simple) circuit to “convert” the state of the switch to a voltage. A common circuit used to do this is shown
below on the left. The resistor Rpu is often called a pull-up resistor, because its function is to “pull up” the
voltage of the pin to VDD when the voltage isn’t being driven to ground by the closed switch.

1Or more precisely, the ATmega328; this information is on page 313 of its datasheet at http://www.atmel.com/images/

Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf.

https://www.arduino.cc/en/Reference/pinMode
https://www.arduino.cc/en/Reference/digitalWrite
https://www.arduino.cc/en/Reference/digitalRead
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf


In fact, this pattern is so common that microcontrollers provide internal pull-up resistors that you can enable
in software by using pinMode(pin, INPUT PULLUP) (where pin is your pin number). If you do this, then
you can connect just a switch, as shown below right.

A
rd

u
in
o

VDD

to input
register

pin Vin

VDD

Rpu

A
rd

u
in
o

VDD

to input
register

pin Vin

Rpu

As you might guess, the internal pull-up resistor itself is enabled using a PMOS transistor. Thus, here is a
(simplified) schematic of an input pin:

A
rd

u
in
o

Rpu

VDD

pullup
enable

to input register

Quick reference

Note: In your code, we expect you to use sensible variable names and to define constants for pin numbers.

Lines that should go in your setup() function:

pinMode(pin , INPUT ); // configures pin pin as input without pull -up

pinMode(pin , INPUT_PULLUP ); // configures pin pin as input with pull -up

pinMode(pin , OUTPUT ); // configures pin pin as output

Lines that control or read the pins:

byte x = digitalRead(pin ); // reads the value of pin pin

digitalWrite(pin , HIGH); // sets the state of pin pin to HIGH

digitalWrite(pin , LOW); // sets the state of pin pin to LOW

2


