
JAVA CHAPTER 2:- CLASS,INTERFACES AND PACKAGES

//2.1 = define class

class point_1{

 public static void main(String[] args) {

 /*

 class:= 1.In object-oriented programming, a class is a

basic building block

 2.class is a collection of object and it don't take

any space on

 memory

 3.class is also called as blueprint

 4. syntay:= class class_name {

 //data

 //method

 //code

 }

 5.example := class Noob{

 int a=43;

 }

 */

 }

}

Point :-2

//2.2= define member fields

class point_2{

 public static void main(String[] args) {

 /*

 what is member fields- in object oriented programming a

member variable (sometimes called a

 member field)is a variable that is associated with a

specific object and accessible for all its method

 (member function)

 refer the chapter 1 point:-2.3-->blocks & variable

scope

 */

 }

}

Point:- 3

//2.3=constructor & instantion

class point_3{

 public static void main(String[] args) {

 /*

 what is constructor:= 1.constructor is a speciale type of

method whose name is same as class name

 2.the main purpose of constructor is

initialize the object

 3.every java class has a default

constructor

 4.a constructor is outometically

called at the time of object creation

 5.a constructor never contain any

return-type including void

 6. thre are 4 constructor in java

1.private 2.default 3.parameterized 5.copy

 7. syntax - class class_name{

 class_name{

 }

 */

 /*

 //default constructor:- program

 class Noob{

 int a; String b; boolean c;

 Noob{

 a=100;

 b="noob";

 c=false;

 }

 }

 void show {

 System.out.println(a+""+b+""+c)

 }

 class Default_constructor{

 public static void main(String args[]){

 Noob n=new Noob();

 n.show();

 }

 }

 */

 /*

 //parametrized constructor:- program

 class Noob{

 int o;int z;

 Noob(int a ,int b){

 o=a;

 z=b;

 }

 }

 void show {

 System.out.println(o+""+y)

 }

 class Default_constructor{

 public static void main(String args[]){

 Noob n=new Noob(45,79);

 n.show();

 }

 }

 */

 /*

 // copy constructor:- program

 //not IMP

 */

 /*

 // private constructor :- program

 //not IMP

 */

 }

}

Point:- 4

//2.4=Defining and Invoking Member Methods

class point_4{

 public static void main(String[] args) {

 /*

 Method :=

 1.In general, a method is a way to perform some task

 2.Similarly, the method in Java is a collection of

instructions that performs a specific task.

 3.It provides the reusability of code. We can also easily

modify code using methods.

 4.There are two types of methods in Java: Predefined

Method,User-defined Method

 5.Predefined Method-In Java, predefined methods are the

method that is already defined in the

 Java class libraries is known as predefined methods. It

is also known as the standard library

 method or built-in method

 example -println();

 6.User-defined-The method written by the user or

programmer is known as a user-defined method.

 These methods are modified according to the requirement.

 example -void show(){};

 */

 /*

 How do you invoke a method?

 1.Create a class object that corresponds to the

object whose method you want to invoke.

 For more information, see the Retrieving Class

Objects section.

 2.Create a method. object by calling getMethod on the

class object.

 3.Call the method by calling invoke .

 */

 /*

 */

}

}

Point:-5

//2.5= Inheriting Members from Another Class (superclass)

class point_5{

 public static void main(String[] args) {

 /*

 Inheritance:-1.Inheritance in Java is a mechanism in which

one object acquires all the properties

 and behaviors of a parent object. It is an

important part of OOPs

 2.a new class access all the feature &

properties of existing class called inheritance

 3.in java extends keyword is use to perform

inheritans

 4.it provid code reusablity

 5.we can't access private member of class

through inheritance

 6.types of inheritance

Single,Multilevel,Hierarchical,multiple

 7.syntax:= class Subclass-name extends

Superclass-name{

 //methods and fields

 }

 */

 /*

 Single inheritance program:=

 class Animal{

 void eat(){

 System.out.println("eating...");

 }

 }

 class Dog extends Animal{

 void bark(){

 System.out.println("barking...");

 }

 }

 class TestInheritance{

 public static void main(String args[]){

 Dog d=new Dog();

 d.bark();

 d.eat();

 }}

 */

 /*

 // Multilevel Inheritance program:=

 class Animal{

 void eat(){

 System.out.println("eating...");}

 }

 class Dog extends Animal{

 void bark(){

 System.out.println("barking...");}

 }

 class BabyDog extends Dog{

 void weep(){

 System.out.println("weeping...");}

 }

 class TestInheritance2{

 public static void main(String args[]){

 BabyDog d=new BabyDog();

 d.weep();

 d.bark();

 d.eat();

 }}

 */

 /*

 Hierarchical Inheritance program:=

 class Animal{

 void eat(){

 System.out.println("eating...");}

 }

 class Dog extends Animal{

 void bark(){

 System.out.println("barking...");}

 }

 class Cat extends Animal{

 void meow(){

 System.out.println("meowing...");}

 }

 class TestInheritance3{

 public static void main(String args[]){

 Cat c=new Cat();

 c.meow();

 c.eat();

 }}

 */

 /*

 super keyword in java:-

 1.super keyword refer to the object of super class it

is used when we want to call the supwe class

 variable ,method,& constructor through sub class

object

 2.whenever the super class & sub class variable and

method name both are same than it can be used

 only

 3.to avoid the confusion between super class and sub

classes variable and method that have same

 name we should use super keyword

 super program:=

 class A{

 int a=10;

 }

 class B Extends A{

 int a=20;

 void show(){

 System.out.println(a);

 System.out.println(super.a);

 }

 }

 class Main_A{

 public static void main(String argd[]){

 B obj = new B();

 obj.show();

 }

 }

 */

 }

}

Point:-6

//2.6 = Defining and Implementing Interfaces

class point_6{

 public static void main(String[] args) {

 /*

 Interfaces:=1.Interfaces is just like a class which contain

only abstract method

 2.to provide Interfaces java provide a keyword

called implement

 3.Interfaces methods are bydefault public &

abstract

 4.Interfaces method must be overriden inside the

implimenting classes

 5.Interfaces nothing but deals between client &

developer

 6. syntax :- Interfaces Interfaces_name{

 //code

 }

 7. Interface program:=

 inport java.util.Scanner;

 Interface client{

 void input();

 void output();

 }

 class test implements client{

 String name;double sal;

 public void input(){

 Scanner sc = Scanner (System.in);

 System.out.println("Enter the name");

 name=sc.nextLine();

 System.out.println("Enter the

salary");

 name=sc.nextDouble();

 }

 public void output(){

 System.out.println(name+""+salary)

 }

 client c = new test();

 c.input();

 c.output();

 }

 */

 }

}

Point:-7

//2.7= Overriding and Overloading methods

class point_7{

 public static void main(String[] args) {

 /*

 method overriding -1.If a subclass provides the specific

implementation of the method that has been

 declared by one of its parent class, it is

known as method overriding.

 2.Method overriding is used to provide the

specific implementation of a method which

 is already provided by its superclass

 3.Method overriding is used for runtime

polymorphism

 4.syntax -

 class A{

 void show(){

 }

 }

 class B Extends A{

 void show(){

 }

 }

 5.program

 class A{

 void shape(){

 System.out.println("Shape A ");

 }

 }

 class B Extends A{

 @Override

 void shape(){

 System.out.println("Shape B");

 }

 class test{

 public static void main(String args[]){

 A s = new A();

 s.shape();

 }

 }

 */

 /*

 Overloading methods:=1.whenever a class contain more then one

method with same name and different type

 of parameters called method overloading

 2.syntax:=

 return_type methode_name(int a);

 return_type methode_name(int a,int b);

 3.program -

 class A{

 void add(){

 int a=14,b=34,c;

 c=a+b;

 System.out.println(c);

 }

 void add(int x,int y){

 int c;

 c=a-b;

 System.out.println(c);

 }

 void add(double c,int y){

 double c;

 c=a-b;

 System.out.println(c);

 }

 public static void main(String

args[]){

 A r = new A();

 r.add();

 r.add(28,87);

 r.add(45.56,67);

 }

 }

 */

 }

}

Point:-8

2.8= Static Fields and Static Methods

Note :- 1.A static field can be accessed before any object of a class is created, without reference to any

object.

 2. We define as static when the behaviour or state does not depend on any particular instance of

the class.

1|static variable=[

 ● Static variables are also known as class variables.

 ● Initialization of a static variable is not mandatory. Its default value is 0.

 ● static variables are declared using the static keyword within a class outside

 of any method, constructor or block.

 ● class main{

 public static int a=6; --> static variable

 public static void main(String args[]){

 }

]

2|static method=[

 ● static method access only static variable

 ● without object you can access static method

 ● program:-

 class A{

 static int a=34;

 public static void main String(String args []){

 A.show();

 }

 static void show(){

 System.out.println(a);

 }

 }

]

3|static block=[

 ●static block is such kind of block in java which gets executed at the time of loading the

 class file into JVM

 ●syntax- class A{

 static {

 //static block

 }

 }

 ●program-

 class A{

 public state void main(String args[]){

 }

 static{

 System.out.println("NOOB");

 }

 }

]

Point:-9

2.9= Defining a Package

Package[

 1|A java package is a group of similar types of classes, interfaces and sub-packages.

 2|Package in java can be categorized in two form, built-in package and user-defined package.

 3|There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

 4| syntax of creating user_defined package Package Package_name;

 5|how to compile package file

 use this command:- javac -d . file_name

 6|example :- javac -d . Simple.java

Point:-10

2.11 Access Control

1|Private: The access level of a private modifier is only within the class. It cannot be accessed from

outside

 the class.

2|Default: The access level of a default modifier is only within the package. It cannot be accessed from

outside

 the package. If you do not specify any access level, it will be the default.

3|Protected: The access level of a protected modifier is within the package and outside the package

through child

 class. If you do not make the child class, it cannot be accessed from outside the package.

4|Public: The access level of a public modifier is everywhere. It can be accessed from within the class,

outside

 the class, within the package and outside the package.

